Showing posts with label Neurological Disease. Show all posts
Showing posts with label Neurological Disease. Show all posts

Monday, September 13, 2010

Hydrocephalus

What is hydrocephalus?

The term hydrocephalus is derived from the Greek words "hydro" meaning water and "cephalus" meaning head. As the name implies, it is a condition in which the primary characteristic is excessive accumulation of fluid in the brain. Although hydrocephalus was once known as "water on the brain," the "water" is actually cerebrospinal fluid (CSF) — a clear fluid that surrounds the brain and spinal cord. The excessive accumulation of CSF results in an abnormal widening of spaces in the brain called ventricles. This widening creates potentially harmful pressure on the tissues of the brain.

The ventricular system is made up of four ventricles connected by narrow passages.. Normally, CSF flows through the ventricles, exits into cisterns (closed spaces that serve as reservoirs) at the base of the brain, bathes the surfaces of the brain and spinal cord, and then reabsorbs into the bloodstream.

CSF has three important life-sustaining functions: 1) to keep the brain tissue buoyant, acting as a cushion or "shock absorber"; 2) to act as the vehicle for delivering nutrients to the brain and removing waste; and 3) to flow between the cranium and spine and compensate for changes in intracranial blood volume (the amount of blood within the brain).

What are the different types of hydrocephalus?

Hydrocephalus may be congenital or acquired. Congenital hydrocephalus is present at birth and may be caused by either events or influences that occur during fetal development, or genetic abnormalities. Acquired hydrocephalus develops at the time of birth or at some point afterward. This type of hydrocephalus can affect individuals of all ages and may be caused by injury or disease.Hydrocephalus may also be communicating or non-communicating. Communicating hydrocephalus occurs when the flow of CSF is blocked after it exits the ventricles. This form is called communicating because the CSF can still flow between the ventricles, which remain open. Non-communicating hydrocephalus - also called "obstructive" hydrocephalus - occurs when the flow of CSF is blocked along one or more of the narrow passages connecting the ventricles. One of the most common causes of hydrocephalus is "aqueductal stenosis." In this case, hydrocephalus results from a narrowing of the aqueduct of Sylvius, a small passage between the third and fourth ventricles in the middle of the brain.

There are two other forms of hydrocephalus which do not fit exactly into the categories mentioned above and primarily affect adults: hydrocephalus ex-vacuo and normal pressure hydrocephalus.

Hydrocephalus ex-vacuo occurs when stroke or traumatic injury cause damage to the brain. In these cases, brain tissue may actually shrink. Normal pressure hydrocephalus can happen to people at any age, but it is most common among the elderly. It may result from a subarachnoid hemorrhage, head trauma, infection, tumor, or complications of surgery. However, many people develop normal pressure hydrocephalus even when none of these factors are present for reasons that are unknown.

Who gets this hydrocephalus?

The number of people who develop hydrocephalus or who are currently living with it is difficult to establish since there is no national registry or database of people with the condition. However, experts estimate that hydrocephalus affects approximately 1 in every 500 children.

What causes hydrocephalus?

The causes of hydrocephalus are still not well understood. Hydrocephalus may result from inherited genetic abnormalities (such as the genetic defect that causes aqueductal stenosis) or developmental disorders (such as those associated with neural tube defects including spina bifida and encephalocele). Other possible causes include complications of premature birth such as intraventricular hemorrhage, diseases such as meningitis, tumors, traumatic head injury, or subarachnoid hemorrhage, which block the exit of CSF from the ventricles to the cisterns or eliminate the passageway for CSF into the cisterns.

What are the symptoms of hydrocephalus?

Symptoms of hydrocephalus vary with age, disease progression, and individual differences in tolerance to the condition. For example, an infant's ability to compensate for increased CSF pressure and enlargement of the ventricles differs from an adult's. The infant skull can expand to accommodate the buildup of CSF because the sutures (the fibrous joints that connect the bones of the skull) have not yet closed.

In infancy, the most obvious indication of hydrocephalus is often a rapid increase in head circumference or an unusually large head size. Other symptoms may include vomiting, sleepiness, irritability, downward deviation of the eyes (also called "sunsetting"), and seizures.

Older children and adults may experience different symptoms because their skulls cannot expand to accommodate the buildup of CSF. Symptoms may include headache followed by vomiting, nausea, papilledema (swelling of the optic disk which is part of the optic nerve), blurred or double vision, sunsetting of the eyes, problems with balance, poor coordination, gait disturbance, urinary incontinence, slowing or loss of developmental progress, lethargy, drowsiness, irritability, or other changes in personality or cognition including memory loss.

Symptoms of normal pressure hydrocephalus include, problems with walking, impaired bladder control leading to urinary frequency and/or incontinence, and progressive mental impairment and dementia. An individual with this type of hydrocephalus may have a general slowing of movements or may complain that his or her feet feel "stuck." Because some of these symptoms may also be experienced in other disorders such as Alzheimer's disease, Parkinson's disease, and Creutzfeldt-Jakob disease, normal pressure hydrocephalus is often incorrectly diagnosed and never properly treated. Doctors may use a variety of tests, including brain scans (CT and/or MRI), a spinal tap or lumbar catheter, intracranial pressure monitoring, and neuropsychological tests, to help them accurately diagnose normal pressure hydrocephalus and rule out any other conditions.

How is hydrocephalus diagnosed?

Hydrocephalus is diagnosed through clinical neurological evaluation and by using cranial imaging techniques such as ultrasonography, computed tomography (CT), magnetic resonance imaging (MRI), or pressure-monitoring techniques. A physician selects the appropriate diagnostic tool based on an individual's age, clinical presentation, and the presence of known or suspected abnormalities of the brain or spinal cord. top

What is the current treatment for hydrocephalus?

Hydrocephalus is most often treated by surgically inserting a shunt system. This system diverts the flow of CSF from the CNS to another area of the body where it can be absorbed as part of the normal circulatory process.

Sunday, August 08, 2010

Guillain-Barré Syndrome

What is Guillain-Barré syndrome?

Guillain-Barré syndrome is a disorder in which the body's immune system attacks part of the peripheral nervous system. The first symptoms of this disorder include varying degrees ofweakness or tingling sensations in the legs. In many instances the weakness and abnormal sensations spread to the arms and upper body. These symptoms can increase in intensity until certain muscles cannot be used at all and, when severe, the patient is almost totally paralyzed. In these cases the disorder is life threatening - potentially interfering with breathing and, at times, with blood pressure or heart rate - and is considered a medical emergency. Such a patient

is often put on a respirator to assist with breathing and is watched closely for problems such as an abnormal heart beat, infections, blood clots, and high or low blood pressure. Most patients, however, recover from even the most severe cases of Guillain-Barré syndrome, although some continue to have a certain degree of weakness.

What causes Guillain-Barré syndrome?

No one yet knows why Guillain-Barré - which is not contagious - strikes some people and not others. Nor does anyone know exactly what sets the disease in motion.

What scientists do know is that the body's immune system begins to attack the body itself, causing what is known as an autoimmune disease. Usually the cells of the immune system attack only foreign material and invading organisms. In Guillain-Barré syndrome, however, the immune system starts to destroy the myelin sheath that surrounds the axons of many peripheral nerves, or even the axons themselves (axons are long, thin extensions of the nerve cells; they carry nerve signals). The myelin sheath surrounding the axon speeds up the transmission of nerve signals and allows the transmission of signals over long distances.

In diseases in which the peripheral nerves' myelin sheaths are injured or degraded, the nerves cannot transmit signals efficiently. That is why the muscles begin to lose their ability to respond to the brain's commands, commands that must be carried through the nerve network. Alternately, the brain may receive inappropriate signals that result in tingling, "crawling-skin," or painful sensations. Because the signals to and from the arms and legs must travel the longest distances they are most vulnerable to interruption. Therefore, muscle weakness and tingling sensations usually first appear in the hands and feet and progress upwards.

When Guillain-Barré is preceded by a viral or bacterial infection, it is possible that the virus has changed the nature of cells in the nervous system so that the immune system treats them as foreign cells. It is also possible that the virus makes the immune system itself less discriminating about what cells it recognizes as its own, allowing some of the immune cells, such as certain kinds of lymphocytes and macrophages, to attack the myelin.

What are symptoms of Guillain-Barré syndrome?

Symptoms of Guillain-Barré Syndrome include weakness, typically beginning in the legs and progressing upward. The weakness is accompanied by decreased feeling (paresthesia). Reflexes are lost, for example, the hammer to the front of the knee will not induce a kick. In severe cases breathing can be affected enough to require a ventilator and rarely the heart can be affected. The maximal degree of weakness usually occurs within the first 2-3 weeks.

After the first clinical manifestations of the disease, the symptoms can progress over the course of hours, days, or weeks.

How is Guillain-Barré syndrome diagnosed?

Guillain-Barré is called a syndrome rather than a disease because it is not clear that a specific disease-causing agent is involved. A syndrome is a medical condition characterized by a collection of symptoms (what the patient feels) and signs (what a doctor can observe or measure). The signs and symptoms of the syndrome can be quite varied, so doctors may, on rare occasions, find it difficult to diagnose Guillain-Barré in its earliest stages.

Several disorders have symptoms similar to those found in Guillain-Barré, so doctors examine and question patients carefully before making a diagnosis. Collectively, the signs and symptoms form a certain pattern that helps doctors differentiate Guillain-Barré from other disorders. For example, physicians will note whether the symptoms appear on both sides of the body (most common in Guillain-Barré) and the quickness with which the symptoms appear (in other disorders, muscle weakness may progress over months rather than days or weeks). In Guillain-Barré, reflexes such as knee jerks are usually lost. Because the signals traveling along the nerve are slower, a nerve conduction velocity (NCV) test can give a doctor clues to aid the diagnosis. In Guillain-Barré patients, the cerebrospinal fluid that bathes the spinal cord and brain contains more protein than usual. Therefore a physician may decide to perform a spinal tap, a procedure in which the doctor inserts a needle into the patient's lower back to draw cerebrospinal fluid from the spinal column.

How is Guillain-Barré syndrome treated?

There is no known cure for Guillain-Barré syndrome. However, there are therapies that lessen the severity of the illness and accelerate the recovery in most patients. There are also a number of ways to treat the complications of the disease.

Currently, plasma exchange (sometimes called plasmapheresis) and high-dose immunoglobulin therapy are used. Both of them are equally effective, but immunoglobulin is easier to administer. Plasma exchange is a method by which whole blood is removed from the body and processed so that the red and white blood cells are separated from the plasma, or liquid portion of the blood. The blood cells are then returned to the patient without the plasma, which the body quickly replaces. Scientists still don't know exactly why plasma exchange works, but the technique seems to reduce the severity and duration of the Guillain-Barré episode. This may be because the plasma portion of the blood contains elements of the immune system that may be toxic to the myelin.

In high-dose immunoglobulin therapy, doctors give intravenous injections of the proteins that, in small quantities, the immune system uses naturally to attack invading organisms. Investigators have found that giving high doses of these immunoglobulins, derived from a pool of thousands of normal donors, to Guillain-Barré patients can lessen the immune attack on the nervous system. Investigators don't know why or how this works, although several hypotheses have been proposed.

The use of steroid hormones has also been tried as a way to reduce the severity of Guillain-Barré, but controlled clinical trials have demonstrated that this treatment not only is not effective but may even have a deleterious effect on the disease.

The most critical part of the treatment for this syndrome consists of keeping the patient's body functioning during recovery of the nervous system. This can sometimes require placing the patient on a respirator, a heart monitor, or other machines that assist body function.

Often, even before recovery begins, caregivers may be instructed to manually move the patient's limbs to help keep the muscles flexible and strong. Later, as the patient begins to recover limb control, physical therapy begins.

What is the long-term outlook for those with Guillain-Barré syndrome?

Guillain-Barré syndrome can be a devastating disorder because of its sudden and unexpected onset. In addition, recovery is not necessarily quick. As noted above, patients usually reach the point of greatest weakness or paralysis days or weeks after the first symptoms occur. Symptoms then stabilize at this level for a period of days, weeks, or, sometimes, months. The recovery period may be as little as a few weeks or as long as a few years. About 30 percent of those with Guillain-Barré still have a residual weakness after 3 years. About 3 percent may suffer a relapse of muscle weakness and tingling sensations many years after the initial attack.

Guillain-Barré syndrome patients face not only physical difficulties, but emotionally painful periods as well. It is often extremely difficult for patients to adjust to sudden paralysis and dependence on others for help with routine daily activities. Patients sometimes need psychological counseling to help them adapt.

Tuesday, June 15, 2010

Alzheimer's Disease

Alzheimer’s disease is an irreversible, progressive brain disease that slowly destroys memory and thinking skills, and eventually even the ability to carry out the simplest tasks. In most people with Alzheimer’s, symptoms first appear after age 60.

Alzheimer’s disease is the most common cause of dementia among older people. Dementia is the loss of cognitive functioning—thinking, remembering, and reasoning—to such an extent that it interferes with a person’s daily life and activities. Estimates vary, but experts suggest that as many as 5.1 million Americans may have Alzheimer’s.

Alzheimer’s disease is named after Dr. Alois Alzheimer. In 1906, Dr. Alzheimer noticed changes in the brain tissue of a woman who had died of an unusual mental illness. Her symptoms included memory loss, language problems, and unpredictable behavior. After she died, he examined her brain and found many abnormal clumps (now called amyloid plaques) and tangled bundles of fibers (now called neurofibrillary tangles). Plaques and tangles in the brain are two of the main features of Alzheimer’s disease. The third is the loss of connections between nerve cells (neurons) in the brain.

Changes in the Brain in Alzheimer’s Disease

Although we still don’t know what starts the Alzheimer’s disease process, we do know that damage to the brain begins as many as 10 to 20 years before any problems are evident. Tangles begin to develop deep in the brain, in an area called the entorhinal cortex, and plaques form in other areas. As more and more plaques and tangles form in particular brain areas, healthy neurons begin to work less efficiently. Then, they lose their ability to function and communicate with each other, and eventually they die. This damaging process spreads to a nearby structure, called the hippocampus, which is essential in forming memories. As the death of neurons increases, affected brain regions begin to shrink. By the final stage of Alzheimer’s, damage is widespread and brain tissue has shrunk significantly.

Very Early Signs and Symptoms

Memory problems are one of the first signs of Alzheimer’s disease. Some people with memory problems have a condition called amnestic mild cognitive impairment (MCI). People with this condition have more memory problems than normal for people their age, but their symptoms are not as severe as those with Alzheimer’s. More people with MCI, compared with those without MCI, go on to develop Alzheimer’s.

Other changes may also signal the very early stages of Alzheimer’s disease। For example, brain imaging and biomarker studies of people with MCI and those with a family history of Alzheimer’s are beginning to detect early changes in the brain like those seen in Alzheimer’s. These findings will need to be confirmed by other studies but appear promising. Other recent research has found links between some movement difficulties and MCI. Researchers also have seen links between some problems with the sense of smell and cognitive problems. Such findings offer hope that some day we may have tools that could help detect Alzheimer’s early, track the course of the disease, and monitor response to treatments.